Sparse Subspace Clustering by Orthogonal Matching Pursuit
نویسندگان
چکیده
Subspace clustering methods based on `1, `2 or nuclear norm regularization have become very popular due to their simplicity, theoretical guarantees and empirical success. However, the choice of the regularizer can greatly impact both theory and practice. For instance, `1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad conditions (e.g., arbitrary subspaces and corrupted data). However, it requires solving a large scale convex optimization problem. On the other hand, `2 and nuclear norm regularization provide efficient closed form solutions, but require very strong assumptions to guarantee a subspace-preserving affinity, e.g., independent subspaces and uncorrupted data. In this paper we study a subspace clustering method based on orthogonal matching pursuit. We show that the method is both computationally efficient and guaranteed to give a subspace-preserving affinity under broad conditions. Experiments on synthetic data verify our theoretical analysis, and applications in handwritten digit and face clustering show that our approach achieves the best trade off between accuracy and efficiency.
منابع مشابه
Accelerated Sparse Subspace Clustering
State-of-the-art algorithms for sparse subspace clustering perform spectral clustering on a similarity matrix typically obtained by representing each data point as a sparse combination of other points using either basis pursuit (BP) or orthogonal matching pursuit (OMP). BP-based methods are often prohibitive in practice while the performance of OMP-based schemes are unsatisfactory, especially i...
متن کاملDimensionality-reduced subspace clustering
Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, whose number, orientations, and dimensions are all unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from undersampling due to complexity and speed constraints on the acquisition device o...
متن کاملGreedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering
Unions of subspaces provide a powerful generalization of single subspace models for collections of high-dimensional data; however, learning multiple subspaces from data is challenging due to the fact that segmentation—the identification of points that live in the same subspace—and subspace estimation must be performed simultaneously. Recently, sparse recovery methods were shown to provide a pro...
متن کاملGreedy feature selection for subspace clustering
Unions of subspaces provide a powerful generalization of single subspace models for collections of high-dimensional data; however, learning multiple subspaces from data is challenging due to the fact that segmentation—the identification of points that live in the same subspace—and subspace estimation must be performed simultaneously. Recently, sparse recovery methods were shown to provide a pro...
متن کاملNoisy subspace clustering via matching pursuits
Sparsity-based subspace clustering algorithms have attracted significant attention thanks to their excellent performance in practical applications. A prominent example is the sparse subspace clustering (SSC) algorithm by Elhamifar and Vidal, which performs spectral clustering based on an adjacency matrix obtained by sparsely representing each data point in terms of all the other data points via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1507.01238 شماره
صفحات -
تاریخ انتشار 2015